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SLOW HEAD-TAIL INSTABILITY IN A PROTON SYNCHROTRON 

Accelerator Physics Department. 
Fermi National Accelerator Laboratory’ 

P.O. Box 500, Batavia. IL. 60510 

February 1992 

Presented study is motivated by a coherent betatmn instability observed in the Tevatron. Here, a 
simple analytic model bawd on the Sacherer’s formalism is extended to describe the slow head-tail instabil- 
ity. The so-called plane wave model of the transverse modes allows one to link different growth-time scales 
with the specific contributions to the !mnsverse coupling impedance. As a result of this formalism the ef- 
fective impedance, written in terms of the convolution of the beam spectrum and the relevant contribution 
to the coupling impedance. is evaluated explicitly via contour integration using Cauchy’s integral theorem. 
Finally, a closed analytic formula describing the growth time vs chromaticity is obtained in the case of an 
arbiuary head-tail mode driven by a general peaked impedance. This result is in close agreement with similar 
calculation done in the framework of a more realistic Vlasov equation-based “air bag” model. Our formalism 
was tested numerically in case of the Tevatmn’s instability. Predicted values of the characteristic growth- 
times for various modes are in close agreement with the observed ones. 

*Operated by the Universities Research Association, Inc., under a cont~acf with the US. Department of Energy 



INTRODUCTION - COHERENT BETA’IRON INSTABILITY 

In the next few sections, a systematic analytic description of the slow head-tail instability will be 

presented. It yields a closed expression describing the characteristic growth-time of a given mode vs 

chromaticity. Finally, numerical example (in case of the Tevatron) shows a very good agreement between 

the measured values of the instability growth-times and the ones predicted on the basis of our model. 

Here, we consider a case where both longitudinal and transverse oscillations are coupled through a 

finite chromaticity, 5 , according to the following relationship 

A” =k$, (1.1) 

where Av is the beta&on tune shift and Ap is the longitudinal momentum deviation measured with respect 

to the synchronous particle (Ap defmes position of a given particle within the bunch). One can consider a 

single particle initially at the “head” of the bunch (Ap = 0); iu betauon tune matches the one of the 

synchronous particle. We also assume that both particles have initially the same betatmn phases. Since the 

particle is undergoing synchrotron oscillations, while it is moving towards the “tail” of the bunch it lags in 

the Matron phase behind the synchronous particle (Av < 0). After half of the synchrotron period the phase 

lag, x, reaches maximum and the particle continues moving back towards the “head” of the bunch regaining 

previously lost phase. When a full synchrotron oscillation is completed the initial phase matching is recov- 

ad. 

One can simply express the accumulated phase-lag in terms of the arrival time off-set, T. (measured 

with respect to the synchronous particle) as follows 
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where w, is the revolution frequency and q is the frequency dispersion function (q < 0 below the transi- 

tion). Following an intuitive model of the head-tail instability proposed by Sache& we will assume that 

the amplitude of the transverse beam oscillation (related to the pick-up monitor signal) is a superposition of 

a standing plane wave (with the number of internal nodes defining the longitudinal mode index C ) and a 

propagating part describing previously discussed betatron phase lag/gain process (due to the finite chro- 

maticity). Ihe amplitude signal can be written as 

A&k) = P&T) eiw~7 + 2xikv , (1.3) 

5. 
where “t = ? o0 and k denotes the revolution number. Here the standing wave profile is modelled by 

simple harmonic functions 

cos[(C + 1) x7/2?] C even 
P,(Z) = 

sin[(C + 1) 9x/2$ I odd ’ 
(1.4) 

where 6 is the bunch length (in units of time). 

One can easily find the power specuum of the transverse beam signal by taking the Fourier tmns- 

form of Eq.(1.3) 

A&&k) = P&o - ws) e 2aikv (1.3 

Pi = F lPt(t)l 
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One can see, that the beam specuum is shifted by O+ due to the presence of the propagating wave compo- 

nent. Perk&city given by the revolution period, 2x&,, yields the discrete frequency spectrum with spacing 

G. The envelope of the power spectrum is defmed as 

fqo) = IP‘W Iz 

and is sampled by the frequencies 

op=@+v)o, 

where p is an integer. 

The explicit form of the power spectrum is given by the following expression3 

h&w)=> (c+ 1) 1 + (-1)‘ COS(2”$ 
[(2&//rr)2 - (C + 1)2]2 ’ 

(1.6) 

(1.7) 

which will serve as a spectral density function in evaluation of the averaged vansverSe self-force driving 

specific slow head-tail modes. 
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2. SINGLE PARTICLE DYNAMICS 

Following Sacherer’s argument* one can generalize a simple equation of motion describing a wake 

field driven coherent bet&on motion of a coasting beam to model the head-tail instability of the bunched 

beam. A simple dipole oscillation of the coasting beam as a whole is governed by the. following equation 

X+(vqJ2x=i~ g 7.. (2.1) 

Here x is the UansverSe displacement, Z, denotes the transverse coupling impedance, I is the total beam cur- 

rent and R is the machine radius. The following approach assumes ad hoc existence of a given head-tail 

mode, C, previously described by Eqs(l.3) and (1.4), by imposing specific periodic dependence of the beta- 

tron motion with respect to the longitudinal position, 7. This dependence is given by the following formula 

x‘(t.7) = eQ t 2 x”, exp(n(C + l)pr/24) , (2.2) 
p= -ca 

where Gt is the coherent frequency. The above expression imposes (C + I)-fold pxiodicity on the betatron 

amplitude along the bunch. 

In a case of a bunched beam the wake. field experienced by a test particle at the position 7 is now 

given by the following convolution of the transverse impedance and the normalized beam spectrum, p 

P(r) = alo Zl(wp) p‘(wp- ok) e iOo’p , (2.3 
p=-cc 

where the beam spectrum for a given mode is defined as follows 
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p‘(w) = h‘(o) 

i h?mp) 
p=-ou 

(2.4) 

The deflecting transverse wake force acting on the particle is a sum of the wakes generated by all the 

particles in the bunch, which are ahead of the teat particle (causality): it also includes long range wakes left 

from all the preceding turns. The last feature is explicitly built into the definition of V’(r). given by 

F.q.(2.3). Resulting transverse wake force is conveniently expressed by the following integral 

l+(T) = i-@- k ~ymo 2tc /dT* %‘) h‘A’) 
‘T 

(2.5) 

Substituting the above expression in the RHS of Eq.(2.1) and replacing x by Eq.(2.2) one obtains a com- 

plete equation of motion for the I-th head-tail mode. Applying the following orthogonality identity 

exp(n@+l)(p - p’)r’/22) = (L + 1) i5pp:p , (2.6) 

one can carry out the integration in Eq.(2.5). The resulting decoupled equation of motion for a single 

Fourier component is given by 

[(vo,)2- nt2 -id 2% 1 
ymo 2&z L+ 1 (2.7) 

p’ = -ca 

Assuming a nontrivial solution for x’, yields explicit formula defining coherent frequency of the Gth 

mode. Its imaginary part (with the negative sign) represents the inverse growth-time and is expressed by the 

following formula 
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$=-f$$ ReZkff , (23) 

where E = w&2 is the total energy and 2‘ ee IS the effective impedance defined as follows 

<ff =x 4 
c + 1 200T 

$Z,(rnp~) p‘(op. - q) . 
p’=-00 

The above result can be compared with the growth-time obtained in the framework of the Vlasov 

equation-based description of the slow head-tail instability. The so-called “air bag” model3 assumes &lie 

shell structure of the longitudinal phasespace, which serves as the equilibrium density distribution function 

(on top of which various head-tail modes are constructed as small fluctuations of the particle density). The 

resulting formula has exactly the same generic form as given by Eq42.8) with the effective impedance in- 

troduced as an average over different set of spectral density functions: namely the Bessel functions of the 

first kind. ‘Ibis average is given explicitly as follows5 

&ff = &L(OP9 J fmp - to& p*s.l 
Simple numerical comparison of both formulas describing the effective impedance, E.qs(2.9) and (2.10), 

shows clearly that there is very little difference between both models. 



3. FFFECTIVE IMPEDANCE 

Further consideration will be confined to the real part of the impedance only, since the imaginary 

part does not enter explicitly into the growth-time formulae given by EqsJ2.8) and (2.9). In order to 

evaluate the effective impedance one has to convolute the above four contributions to the transverse 

impedance with the beam spectrum according to Bqs(2.9) and (2.10). Several lower harmonics of the beam 

spectrum are illustrated in Figure 1. The result of the above summation obviously depends on chromaticity. 

One can notice that the relevant part of the transverse impedances, Z1(o). should have a diffrac- 

tion-like character; a principal maximum of width h = la/L. at the origin and a series of equally spaced set- 

ondary maxima governed by the same width. Similarly, the harmonics of the beam spectrum. p’(w - tu$ 

have one (C = 0) or a pair (f. > 1) of principal maxima of width E = n/2$ followed by a sequence of 

secondary maxima (See Figure 1). Both spectra are sampled by a discrete set of frequencies, tap = @ + 

v)oo. In case of relatively long proton bunches in the Tevatron at 150 GeV (2; = 2-3x10-9 set) both 

widths h and E are comparable and they are of the order of the chromatic frequency, ws’ evaluated at about 

10 units of chromaticity. These features combined with the convolution formula for the effective 

impedance, F.qQ2.9) and (2.10), result in substantial ‘overlap’ of the transverse impedance and the beam 

spectrum, which in turn leads to large values of effective impedance for relatively small chromaticities (5 - 

10). 

In contrast, the effective impedance evaluated with the broad-band part of the transverse impedance 

is much smaller than the previously discussed one. The last statement can be explained as follows: the 

width of the broad-band impedance peak, S = OJQ, is much larger than E and in order to overlap this broad 

peak with the principal maximum of the power spectrum harmonics (to get a nonzero effective impedance) 

one would have to shit both spectra by a+, of the order of 8. This, in turn, would require enormous values 

of the chromaticity (5 - 104). 
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Summarizing. only the diffraction-like conhibutions to the transverse impedance are relevant to the 

discussed coherent betanon instability. A closed analytic expression for the inverse growth-time of the slow 

head-tail modes, C, driven by a general peaked impedance will be derived in detail in the next section. 
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4. CHARACfERISTfC GROWTH TIME 

From the discussion of Section 3 we identified the relevant contribution to the transverse coupling 

impedance. The transverse coupling impedance may be expressed analytically as follows4 

ReZL(o)=Gr (l-COSoL) 
4ab w c ’ (4.1) 

where L is the length and a, b are the transverse sires of the resonant structure, Z, is the characteristic shunt 

impedance. We are only concerned with the real part of the impedance which enters into the growth-time 

formula, Eq(2.8) and (2.9). As mentioned before, Z1(w) has a diffraction-like character; a principal maxi- 

mum of width X= xc/L at the origin and a series of equally spaced secondary maxima governed by the same 

width. Similarly the beam power spectrum harmonics, p‘(w - a+). have one (I = 0) or a pair (C > 1) of 

principal maxima of width E = rr& followed by a sequence of secondary maxima. Both spectra are sampled 

by a discrete set of frequencies given by 

op=@+v)wo. (4.2) 

In the limit of E, X << wo the variable tap gains continuous character on the scale of the structure of both 

functions. This allows to replace the infinite summation in Eq(2.9) by the integration according to the 

following substitution 

(4.3) 

Using specific impedance, given by Eq(4.1) one can carry out the above integration and evaluate Bkff in 

closed analytic form. First, one can simplify p‘, expressed by Eq.(2.4), by applying the substitution defined 

10 



by Eq.(4.3) to the sum in the denominator and integrating it explicitly. The resulting expression has the 

following form 

PL@) = &h&o, . 

(4.4) 

h&w)=; 6+ 1) 1 + (-1)‘ cos(2&) 
[(2&/7C)2 - (C + 1)212’ 

Substituting Eqs.(4.1) and (4.4) in Eq.(2.4) allows to rewrite the effective impedance. in terms of the follow- 

ing integral 

z’ 
eff 

= Z,c(C + 1) 79 ‘ 
w,ab iii’ ’ 

(4.5) 

[l - cos(0 + tll$ hl [l + (-1)‘ cos(20”711 

(0 + og)(w + a)2(o - ~2)~ 

a=a+ 1) 
2 . 

Here ws and a define poles in the complex o-plane connected with the chromatic phase shift and beam 

spectrum respectively. The integral 4 can be expressed in terms of much simpler integrals defined by 
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co.3 (ox) 
(0 + oc)(m + a)2(w - a)* ’ 

(4.6) 

sin (tat) 
(0 + wc)(w + u)~(o - a)2 ’ 

in the following form 

J = f(0) + (-l)t J+(2”7) 

+ COS(W$ (-1) 
I J+(li + 24, + J+(h - 2;) _ J+(h) 

2 1 (4.7) 

- sin(w$) (-1) 
‘ J-(h + 24) + J-(h - 24) _ 

2 
,-(u 1. 

Both integrals given by Eq.(4.6) can be easily converted into contour integrals in the complex w-plane and 

evaluated through Cauchy’s integral theorem. The result is given below 

J+(t) = 
z sin(ogt) 

(0 5 2- c&2 

J-(t) = 
II cos(o$ nt sin(at) ncos(at) 

(0 2-d)* + 5 2a(oS2- a2) - (w52- ,2)2 (4.8) 

12 



Final substitution of Eqs.(4.5F(4.8) into Eq.(2.4) leads after a tedious algebra to a simple closed formula 

describing the growth-time of the&th head-tail mode given below 

1 ~42.3 ZoRn’ r(C + 1) 

#-4w% ab x2-&,+ 1)2 x 

[ 
z + (-1) 

sin r 
2&c + 1)2 x2 - r2(C + 1)2 1 (4.9) 

Here x = 2: to,?, is the betatron phase shift between the head and tail of the bunch. 
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5. NUMERICAL EXAMPLE 

At this point some comparison between numerical results of our model with the observed coherent 

instability is in order. As the example we will use the Tevatron at 150 GeV, with the bunch intensity of 

1.8 xlO1oppb. The observed growth-time was fast; less than 30 x10-3sec. Typically, the full ring would go 

unstable, but we have observed unstable behavior in a partial azimuth of the ring when bunches of 

significantly higher intensity were present. 

Assuming only one dominant contribution to the transverse coupling impedance; kicker magnets, the 

inverse growth-time was calculated numerically according to Eqs.(2.8)-(2.10) and (4.9) with: L = 1 m, a = 

3.7 cm, b = 1.9 cm and Z, = 377 Ohm (Tevatron’s kicker magnets). The resulting growth-rates as a 

function of chromaticity evaluated for different slow head-tail modes (I = 0, 1.2,3) are illustrated in Figure 

2. One can immediately see a qualitative difference between the f. = 0 and I. 2 1 modes. 

The experimentally observed situation corresponds to chromaticity of about 3 units. Figure 2 

shows that f. = 1 mode is strongly unstable with the growth-time of about 20 x10-%ec, which would sug- 

gest that this mode is responsible for the observed betatron instability. One way of suppressing the C = 1 

mode would be by decreasing chmmaticity. However. as one can see from Figure 2, the I. = 0 mode appears 

to be unstable for negative chromaticities and might lead to significant enhancement of coherent betauon 

motion. Fortunately, this potentially offending mode can be effectively suppressed by the active damper 

system. This efficient cure for the C = 0 mode obviously does not work in case of the higher modes, since 

its feedback system picks up only the transverse position of a bunch centroid, which remains zero due to the 

symmetry of the higher mode@. Another possible cure (also effective for the I. 2 1 modes) would involve 

the Landau damping through the octupole-induced betatmn tune spread. Increasing betatron amplitude of 

initially unstable mode causes increase of the tune spread, which will eventuaUy self-stabilize development 

of this mode. 
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6. SUMMARY 

In conclusion, we presented a systematic formalism describing coherent betatron instability driven 

by a peaked impedance. The resulting closed formula for the characteristic growth-time vs chromaticity is 

practically equivalent to quite complex Vlasov equation based results, which do not have nice numerical 

simplicity of our formula. Furthermore, there is a good agreement between the characteristic growth-times 

coming from the measurement and those calculated within the framework of the presented model. 
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